Evaluating Performance

Zhiyao Duan Associate Professor of ECE and CS University of Rochester

Some figures are copied from the following books

- **LWLS** Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, Thomas B. Schön, *Machine Learning: A First Course for Engineers and Scientists*, Cambridge University Press, 2022.
- **WBK** Jeremy Watt, Reza Borhani, Aggelos K. Katsaggelos, Machine Learning Refined: Foundations, Algorithms, and Applications (1st Edition), Cambridge University Press, 2016.

Motivating Questions

How to evaluate performance of supervised models?

What metrics to use?

How to use those metrics?

How to interpret evaluation results?

Classification Accuracy

- y: ground-truth class label, \hat{y} : predicted class label
 - Correctly classified: $y = \hat{y}$
 - Misclassified: $y \neq \hat{y}$

$$Acc = \frac{\text{#correctly classified}}{\text{#total examples}}$$

• $0 \le Acc \le 1$

- What is the average accuracy of a random guess for C-class classification?
 - -1/C

Balanced Accuracy

- Is classification accuracy a good metric for a highly imbalanced classification problem (e.g., 99% healthy + 1% ill)?
 - A naïve classifier that always diagnoses unseen patients as healthy achieves 99% accuracy, but it misclassifies all actual patients!
- Balanced accuracy: average over per-class accuracy

$$Acc_{balanced} = Average\left(\frac{\text{#correctly classified for Class c}}{\text{#total examples in Class c}}\right)$$

- $0 \le Acc_{balanced} \le 1$
- The above naïve classifier would only get 1/C balanced accuracy on average

Confusion Matrix

	Classes	a	b	С	d	Total
ACTUAL classification	a	6	0	1	2	9
	b	3	9	1	1	14
	С	1	0	10	2	13
	d	1	2	1	12	16
	Total	11	11	13	17	52

Figure from (Grandini, Bagli & Visani, "Metrics for multi-class classification: an overview", 2020)

Precision & Recall

Be careful about — which axis is ground-truth and which is predicted! —

	y = -1	y = 1	total
$\widehat{y}(\mathbf{x}) = -1$	True neg (TN)	False neg (FN)	N*
$\widehat{\mathbf{y}}(\mathbf{x}) = 1$	False pos (FP)	True pos (TP)	P*
total	N	P	n

• If we treat the positive class as the target class

$$Precision = \frac{TP}{P^*} = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{P} = \frac{TP}{TP + FN}$$

$$F_1 = \frac{2 \cdot Precision \cdot recall}{precision + recall}$$

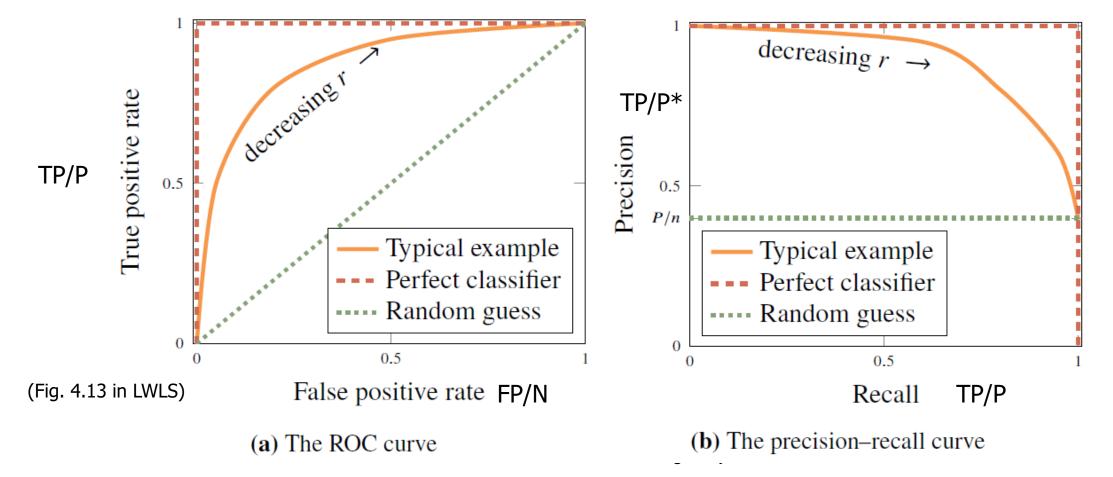
Common Terms related to Confusion Matrix

Ratio	Name
FP/N	False positive rate, Fall-out, Probability of false alarm
TN/N	True negative rate, Specificity Selectivity
TP/P	True positive rate, Sensitivity, Power, Recall, Probability
	of detection
FN/P	False negative rate, Miss rate
TP/P*	Positive predictive value, <i>Precision</i>
FP/P*	False discovery rate
TN/N*	Negative predictive value
FN/N*	False omission rate
P/n	Prevalence
(FN + FP)/n	Misclassification rate
(TN + TP)/n	Accuracy, 1 – misclassification rate
$2TP/(P^* + P)$	F_1score
$(1 + \beta^2)$ TP/ $((1 + \beta^2)$ TP + β^2 FN	F_{β} score
+ FP)	

(Table 4.1 in LWLS)

ROC Curve & Precision-Recall Curve

- Many classifiers uses a threshold r as the last step of classification
 - Decreasing r classifies more examples to the positive class
 - Area under the ROC curve (ROC-AUC): larger is better



Regression Metrics

Mean Squared Error (MSE)

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \hat{y}^{(i)})^2$$

Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \hat{y}^{(i)})^2}$$

Mean Absolute Deviations (MAD), also called Mean Absolute Error (MAE)

$$MAD = \frac{1}{N} \sum_{i=1}^{N} |y^{(i)} - \hat{y}^{(i)}|$$

How to use these metrics?

- These metrics need to be computed on some data points
 - What are the differences between the metrics on training, validation and test sets?
- Training set: used to train the model
 - Make sure performance improves as training goes on and reaches a good level
 - Otherwise: underfitting there are bugs in the training process, or the model is not appropriate, e.g., logistic regression for classes with intrinsically nonlinear boundaries
- Validation set: used to 1) tune hyper-parameters of model, and 2) decide when to stop training
 - Make sure validation performance is not too much lower than training performance, and stop training iterations when validation performance starts to decrease
 - Otherwise: overfitting 1) model is too complex/flexible for the data, 2) training is too long
- Test set: used to report performance to customer
 - Should not be used in training or tuning hyperparameters

Randomness in Metrics

- Data points are randomly sampled from their underlying distribution
 - Computing metrics on different sets → different values
 - Training on different training sets → different model parameters
 - Tuning on different validation sets → different model hyperparameters
- Given an error definition between prediction and ground-truth $E(\hat{y}, y)$
 - Classification error: $E(\hat{y}, y) = \begin{cases} 0 & if \hat{y} = y \\ 1 & if \hat{y} \neq y \end{cases}$
 - Squared error for regression: $E(\hat{y}, y) = (\hat{y} y)^2$
 - There can be many other error definitions
- We care about the error on new (unseen) examples, i.e., generalization!

Expected Error

- Assume data (x, y) follows distribution p(x, y)
- Expected error of model trained on \mathcal{T} and evaluated on new data (i.e., averaging over data distribution)

$$E_{new}(\mathcal{T}) \triangleq \mathbb{E}_{x,y}[E(\hat{y}(x;\mathcal{T}),y)]$$
$$= \int E(\hat{y}(x;\mathcal{T}),y)p(x,y)dxdy$$

- But \mathcal{T} is also random.
- Take another expectation (i.e., averaging again) over all possible instantiations of training set

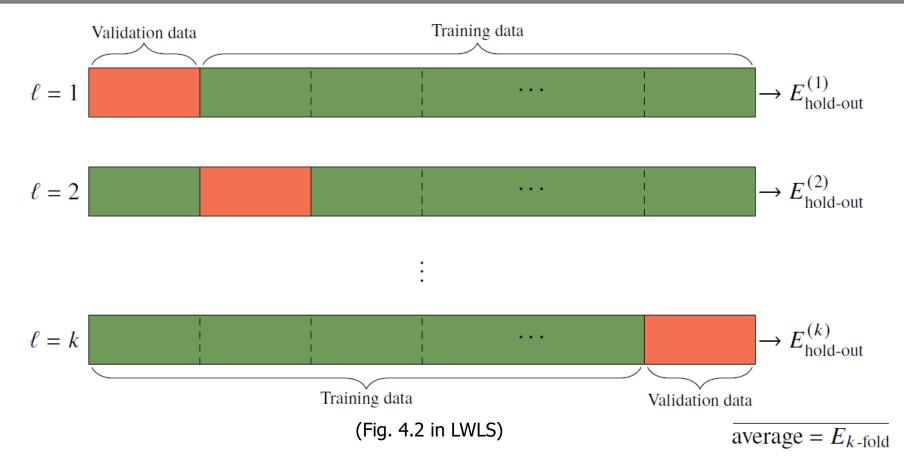
$$\bar{E}_{new} = \mathbb{E}_{\mathcal{T}}[E_{new}(\mathcal{T})]$$

But we do not know the data distribution!

• We can only estimate $E_{new}(\mathcal{T})$ and \bar{E}_{new} on samples

- Training error: $E_{train}(\mathcal{T}) \triangleq \frac{1}{N} \sum_{i=1}^{N} E(\hat{y}(x^{(i)}; \mathcal{T}), y^{(i)})$
- Validation error: $E_{hold-out}(\mathcal{T}) \triangleq \frac{1}{N_v} \sum_{i=1}^{N_v} E\left(\hat{y}\left(\boldsymbol{x}_v^{(i)}; \mathcal{T}\right), y_v^{(i)}\right)$
- Which is a better estimate for $E_{new}(\mathcal{T})$?
- Practice tips: shuffle data before splitting

K-Fold Cross Validation



- The k models are trained on different (k-1 folds) training data
- Better estimate for $\bar{E}_{new} = \mathbb{E}_{\mathcal{T}}[E_{new}(\mathcal{T})]$, if hyper-parameters are not tuned on validation splits
- Practice tips: 1) shuffle data before splitting; 2) train on all data to deliver

Generalization Gap

- Expected training error: $\bar{E}_{train} \triangleq \mathbb{E}_{\mathcal{T}}[E_{train}(\mathcal{T})]$
- Expected test error: $\bar{E}_{new} \triangleq \mathbb{E}_{\mathcal{T}}[E_{new}(\mathcal{T})]$
- Generalization gap is the performance gap between training and test data

generalizatio gap
$$\triangleq \bar{E}_{new} - \bar{E}_{train}$$

Training error - generalization gap decomposition

$$\bar{E}_{new} = \bar{E}_{train} + generalizatio gap$$

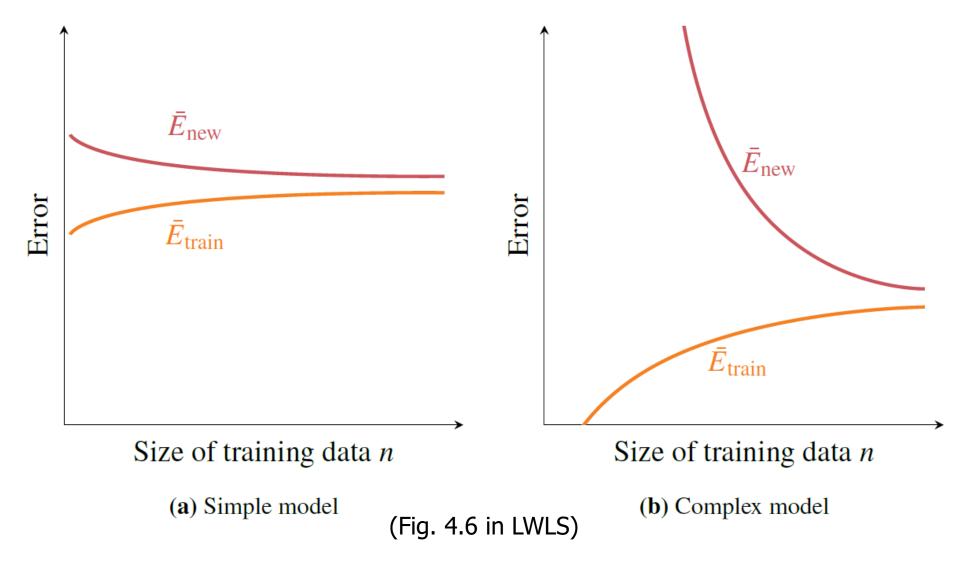
Model Complexity Affects Generalization Gap

- Model complexity (flexibility) is vaguely defined about how much a model adapts to training data
 - High complexity: e.g., deep neural network, deep trees, k-NN with small k
 - Low complexity: e.g., logistic regression, k-NN with large k
- Related to the number of learnable parameters and the strength of regularization
- Some measures
 - Vapnik-Chervonenkis (VC) dimension
 - Minimum Description Length (MDL)



(Fig. 4.3 in LWLS)

Size of Training Set Affects Generalization Gap



How to reduce \bar{E}_{new} ?

$$\bar{E}_{new} = \bar{E}_{train} + generalizatio gap$$

- If training error is larger than the desired test error → problem is too hard or underfitting → redesign your model
- If validation error is similar to training error → likely underfitting → may need to increase model complexity (e.g., loosening regularization, increasing model order and parameters)
- If training error is very low but validation error is high → likely overfitting →
 may need to decrease model complexity (e.g., tightening regularization,
 reducing model order and parameters)
- $\bullet\,$ Increase the size of training data to reduce generalization gap and \bar{E}_{new}

Bias-Variance Decomposition

- Let z_0 be a constant, z be our estimate
- z is a random variable; it varies when we make another try
- Bias: $\mathbb{E}[z] z_0 = \bar{z} z_0$
- Variance: $\mathbb{E}[(z-\bar{z})^2]$
- Expected squared error

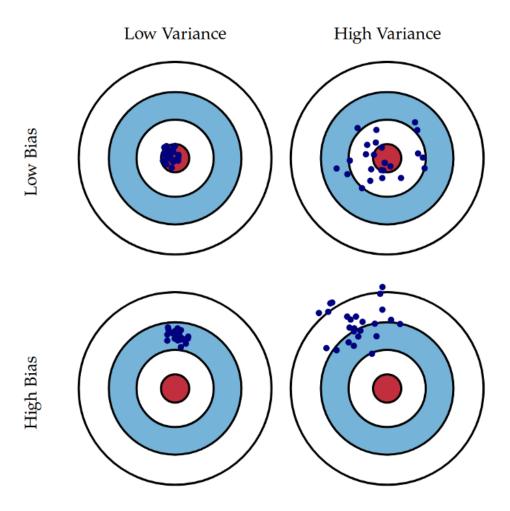
$$\mathbb{E}[(z - z_0)^2] = \mathbb{E}\left[\left((z - \bar{z}) + (\bar{z} - z_0)\right)^2\right]$$

$$= \mathbb{E}[(z - \bar{z})^2] + 2(\mathbb{E}[z] - \bar{z})(\bar{z} - z_0) + (\bar{z} - z_0)^2$$

$$= \mathbb{E}[(z - \bar{z})^2] + (\bar{z} - z_0)^2$$

Variance Bias²

Bias vs. Variance



(Figure from http://scott.fortmann-roe.com/docs/BiasVariance.html)

Bias-Variance Decomposition of \bar{E}_{new}

- Let the true relation between x and y be $y = f_0(x) + \epsilon$, where ϵ is independent noise, and $\mathbb{E}[\epsilon] = 0$ and $\mathbb{E}[\epsilon^2] = \sigma^2$
- Average output of models trained on different training data:

$$\bar{f}(\mathbf{x}) \triangleq \mathbb{E}_{\mathcal{T}}[\hat{y}(\mathbf{x};\mathcal{T})]$$

• \bar{E}_{new} using squared error

$$\bar{E}_{new} = \mathbb{E}_{\mathcal{T}}[E_{new}(\mathcal{T})] = \mathbb{E}_{\mathcal{T}}[\mathbb{E}[(\hat{y}(\boldsymbol{x};\mathcal{T}) - y)^{2}]]
= \mathbb{E}[\mathbb{E}_{\mathcal{T}}[(\hat{y}(\boldsymbol{x};\mathcal{T}) - y)^{2}]] = \mathbb{E}[\mathbb{E}_{\mathcal{T}}[(\hat{y}(\boldsymbol{x};\mathcal{T}) - f_{0}(\boldsymbol{x}) - \epsilon)^{2}]]$$

Apply bias-variance decomposition, we have

$$\mathbb{E}_{\mathcal{T}}[(\hat{y}(\boldsymbol{x};\mathcal{T}) - f_0(\boldsymbol{x}) - \epsilon)^2] = \mathbb{E}_{\mathcal{T}}\left[\left(\hat{y}(\boldsymbol{x};\mathcal{T}) - \bar{f}(\boldsymbol{x})\right)^2\right] + \left(\bar{f}(\boldsymbol{x}) - f_0(\boldsymbol{x})\right)^2 + \epsilon^2$$

$$Variance \qquad Bias^2 \qquad Irreducible error$$

Finally

$$\bar{E}_{new} = \mathbb{E}\left[\mathbb{E}_{\mathcal{T}}\left[\left(\hat{y}(\boldsymbol{x};\mathcal{T}) - \bar{f}(\boldsymbol{x})\right)^{2}\right]\right] + \mathbb{E}\left[\left(\bar{f}(\boldsymbol{x}) - f_{0}(\boldsymbol{x})\right)^{2}\right] + \sigma^{2}$$

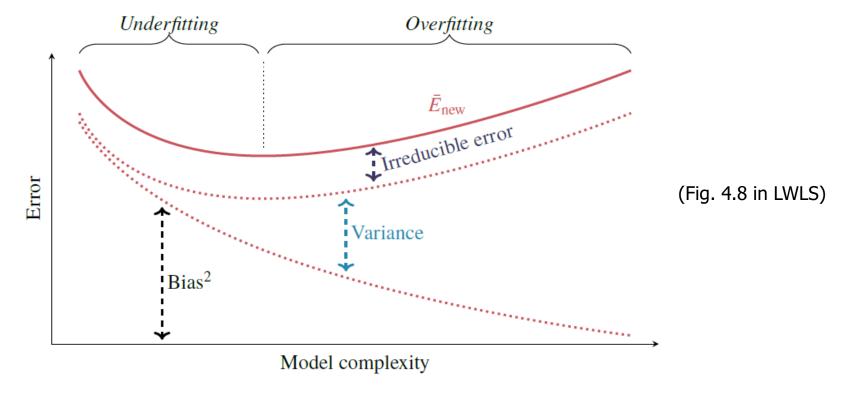
$$Variance \qquad Bias^{2} \qquad Irreducible error$$

Bias-Variance Tradeoff

- Bias is due to the consistent error of model, averaged over all possible training sets
- Variance is due to the randomness of sampling a particular training set and randomness in the training procedure

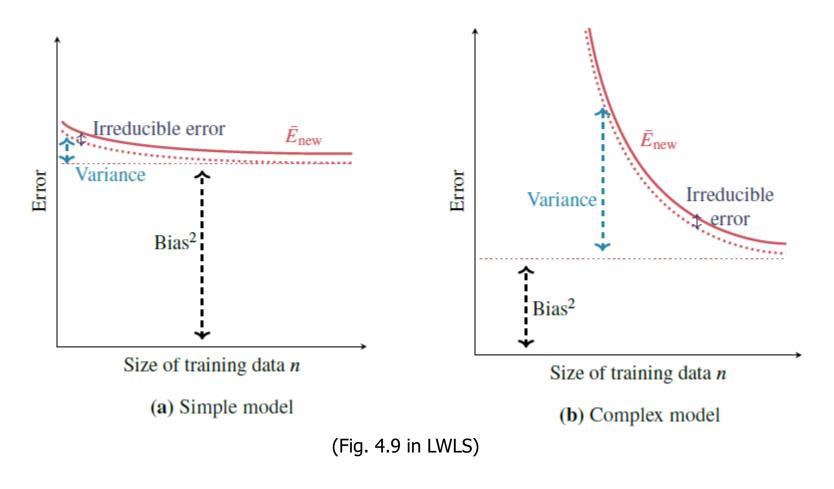
• Higher complexity/flexibility \rightarrow fits training data and its randomness better \rightarrow lower bias and

higher variance



More Training Data → Lower Variance

Especially for complex models (models with large capacity)



Summary

- Different performance metrics (e.g., error, accuracy) for supervised models
- Metrics computed on training, validation and test sets have different use
- Error computed on hold-out validation set and through k-fold cross validation can be used to estimate model error on unseen data \bar{E}_{new}
 - If hyper-parameters are tuned on validation splits, then they underestimate error
- Training error \bar{E}_{train} and generalization gap $\bar{E}_{new} \bar{E}_{train}$
- Bias-variance decomposition of \bar{E}_{new} with squared error
 - Bias is due to consistent error of model, average over all possible training sets
 - Variance is due to randomness of sampling a particular training set and randomness in the training procedure